Quickstart: CLI Workflow
Here’s the complete sequence of commands for the NARW project:
The example uses a light-weight custom
DenseNet
architecture.
Explore the dataset (optional)
$> koogu-explore narw_project.config
1. Data preparation
With audio-annotation mappings and data transformation settings already defined in the config file, you can simply run the below command to prepare the data for training.
$> koogu-prepare narw_project.config
2. Training
With network architecture and training/hyperparameter settings already defined in the config file, you can simply run the below command to start training. Specify a name for the model so you are able to distinguish models from different training attempts.
$> koogu-train narw_project.config narw_detector_v1
3. Performance assessment
3.1. Run on test dataset
# 4. Assess performance
$> koogu-assess narw_project.config narw_detector_v1_perf.html
# 5. Process field recordings
$> koogu-recognize narw_detector_v1/ field_audio/ detections/ \
--threshold 0.75 --recursive --reject-class Other
# 6. Export for Raven Pro
$> koogu-export narw_project.config raven --model narw_detector_v1 \
--threshold 0.85 --suppress Other