

    
      
          
            
  
Koogu

Koogu is a Python package for developing and using Machine Learning (ML) solutions in
Animal Bioacoustics.



Koogu (ಕೂಗು)

/kuːgʊ/


a word in the Kannada language meaning


- call, utterance (used as a noun)

- to call (used as a verb)










The package offers tools for -


	preparing audio (pre-process and transform) to form inputs to ML models,


	training ML models,


	assessing their performance, and


	using trained ML models for automating analyses of large datasets.




Koogu offers tools for ML development from the simplest of bioacoustics
applications to more complex scenarios. All stages of the workflow
(data preparation, training, inference, performance assessment) can be performed
independently.


Data preparation

Many of the neural networks models used in bioacoustics, especially convolutional
neural networks, expect inputs to be of fixed-dimensions, both during training
and while making inferences. Preparing model inputs involves, at a minimum,
breaking up of long-duration audio files into shorter segments as suitable for
the target sound(s) in consideration. Koogu provides convenient interfaces to
efficiently batch-process large collections of acoustic recordings (stored
in various file formats) in preparing model inputs.

Data feeders offer an efficient pipeline for supplying batches of input samples
during model training and validation. They …


	read pre-processed data from disk,


	apply transformation (if any) to the data,


	perform on-the-fly data augmentations (if any),


	cache, shuffle and batch input samples, and


	present the batched samples to the model.




Performing on-the-fly transformations offers the ability to apply randomized
data augmentations in both time- and spectrotemporal domains independently.
Furthermore, custom user-defined feeders can be implemented by extending one of
the available feeder classes.



Model architectures & Training

Koogu provides a few varieties of customizable neural network architectures.
Model complexity can be controlled with the customizations offered by the
architecture-specific classes.

User-defined architectures (including pre-trained models) can be implemented
by extending the base class.

Koogu offers a single-point interface for training and evaluating ML models. The
training process can be controlled, along with various hyperparameter and
regularization settings, by assigning appropriate values to the function’s
parameters.



Performance assessments

When test datasets are available, Koogu’s built-in tools can be used to assess
a trained model’s performance thoroughly against the test dataset.



Analyzing field recordings/soundscape data with trained models

Koogu facilitates batch-processing of large volumes of field recordings using
a trained model. Currently, automatic recognition outputs from batch-processing are
provided as RavenPro [https://ravensoundsoftware.com/software/raven-pro/]
selection table files. A user can not only specify the application of detection
thresholds and how outputs are produced, but also control the utilization of
available computational resources.




















            

          

      

      

    

  

    
      
          
            
  
Quick-start guide

We present here a recipe for a full bioacoustics ML workflow, from data
pre-processing to training, to performance assessments, and finally, to
using a trained model for analyzing soundscape/field recordings.

As an example, we considered the North Atlantic Right Whale (NARW) up-call dataset
from the DCLDE 2013 challenge [https://doi.org/10.17630/62c3eebc-5574-4ec0-bfef-367ad839fe1a]. The dataset
contained 7 days of round-the-clock recordings out of which recordings from the
first 4 days were earmarked as a training set and recordings from the remaining
3 days were set aside as a test set. Each audio file was 15 minutes in
duration, and files from each day were organized in day-specific subdirectories.
The original dataset contained annotations in the legacy Xbat format, which we
converted to RavenPro [https://ravensoundsoftware.com/software/raven-pro/]
selection table format for compatibility with Koogu. A sample of the dataset,
with converted annotations, can be accessed here [https://tinyurl.com/koogu-demo-data].

You may test the below code snippets yourself, using the sample dataset. Once, you
have it working, you could modify the program to suit your own dataset.

The code sections below expect the training and test audio files and corresponding
annotation files to be organized in a directory structure as shown below:

📁 projects
└─ 📁 NARW
   └─ 📁 data
      ├─ 📁 train_audio
      ├─ 📁 train_annotations
      ├─ 📁 test_audio
      └─ 📁 test_annotations






Imports

First, import the necessary modules and functions from the Koogu package.

1from koogu.data import preprocess, feeder
2from koogu.model import architectures
3from koogu import train, assessments, recognize
4
5from matplotlib import pyplot as plt           # used for plotting graphs
6







1. Data preparation

Point out where to fetch the training dataset from.

We also need to specify which annotation files correspond to which audio files
(or, in this example, to sub-directories containing a collection of files).

 8# The root directories under which the training data (audio files and
 9# corresponding annotation files) are available.
10audio_root = '/home/shyam/projects/NARW/data/train_audio'
11annots_root = '/home/shyam/projects/NARW/data/train_annotations'
12
13# Map audio files (or containing folders) to respective annotation files
14audio_annot_list = [
15    ['NOPP6_EST_20090328', 'NOPP6_20090328_RW_upcalls.selections.txt'],
16    ['NOPP6_EST_20090329', 'NOPP6_20090329_RW_upcalls.selections.txt'],
17    ['NOPP6_EST_20090330', 'NOPP6_20090330_RW_upcalls.selections.txt'],
18    ['NOPP6_EST_20090331', 'NOPP6_20090331_RW_upcalls.selections.txt'],
19]





Define parameters for preparing training audio, and for converting them to
spectrograms.

23data_settings = {
24    # Settings for handling raw audio
25    'audio_settings': {
26        'clip_length': 2.0,
27        'clip_advance': 0.4,
28        'desired_fs': 1000
29    },
30
31    # Settings for converting audio to a time-frequency representation
32    'spec_settings': {
33        'win_len': 0.128,
34        'win_overlap_prc': 0.75,
35        'bandwidth_clip': [46, 391]
36    }
37}






1.1 Preprocess

The preprocessing step will split up the audio files into clips (defined by
data_settings['audio_settings']), match available annotations to the clips,
and mark each clip to indicate if it matched one or more annotations.

We believe that the available annotations in the training set covered almost
all occurrences of the target NARW up-calls in the recordings, with no (or
only a small number of) missed calls. As such, we can consider all un-annotated
time periods in the recordings as inputs for the negative class (by setting the
parameter negative_class_label).

41# Path to the directory where pre-processed data will be written.
42# Directory will be created if it doesn't exist.
43prepared_audio_dir = '/home/shyam/projects/NARW/prepared_data'
44
45# Convert audio files into prepared data
46clip_counts = preprocess.from_selection_table_map(
47    data_settings['audio_settings'],
48    audio_annot_list,
49    audio_root, annots_root,
50    output_root=prepared_audio_dir,
51    negative_class_label='Other')






See also

If your project does not have annotations, but you have audio files corresponding
to each species/call type organized under separate directories, you can
pre-process the data using from_top_level_dirs()
instead of from_selection_table_map().



You can check how many clips were generated for each class -

54# Display counts of how many inputs we got per class
55for label, count in clip_counts.items():
56    print(f'{label:<10s}: {count:d}')







1.2. Feeder setup

Now, we define a feeder that efficiently feeds all the pre-processed clips, in
batches, to the training/validation pipeline. The feeder is also transforms the
audio clips into spectrograms.

Typically, model training is performed on computers having one or more GPUs.
While the GPUs consume data at extreme speeds during training, it is imperative
that the mechanism to feed the training data doesn’t keep the GPUs waiting for
inputs. The feeders provided in Koogu utilize all available CPU cores to ensure
that GPU utilization remains high during training.

61data_feeder = feeder.SpectralDataFeeder(
62    prepared_audio_dir,                        # where the prepared clips are at
63    data_settings['audio_settings']['desired_fs'],
64    data_settings['spec_settings'],
65    validation_split=0.15,                     # set aside 15% for validation
66    max_clips_per_class=20000                  # use up to 20k inputs per class
67)





The considered sample dataset contains very many annotated calls, covering a
reasonable range of input variations. As such, in this example we do not employ
any data augmentation techniques. However, you could easily add some of the
pre-canned data augmentations when you
adopt this example to work with your dataset.




2. Training

First, describe the architecture of the model that is to be used. With Koogu,
you do not need to write lot’s of code to build custom models; simply chose an
exiting/available architecture (e.g., ConvNet, DenseNet) and specify how you’d
want it customized.

In this example, we use a light-weight custom
DenseNet architecture.

71model = architectures.DenseNet(
72    [4, 4, 4],                                 # 3 dense-blocks, 4 layers each
73    preproc=[ ('Conv2D', {'filters': 16}) ],   # Add a 16-filter pre-conv layer
74    dense_layers=[32]                          # End with a 32-node dense layer
75)





The training process can be controlled, along with hyperparameter and
regularization settings, by setting appropriate values in the Python
dictionary that is input to train(). See the function API
documentation for all available options.

 79# Settings that control the training process
 80training_settings = {
 81    'batch_size': 64,
 82    'epochs': 50,                              # run for 50 epochs
 83
 84    # Start with a learning rate of 0.01, and drop it to a tenth of its value,
 85    # successively, at epochs 20 & 40.
 86    'learning_rate': 0.01,
 87    'lr_change_at_epochs': [20, 40],
 88    'lr_update_factors': [1.0, 1e-1, 1e-2],    # up to 20, beyond 20, beyond 40
 89
 90    'dropout_rate': 0.05                       # Helps model generalize better
 91}
 92
 93# Path to the directory where model files will be written
 94model_dir = '/home/shyam/projects/NARW/models/my_first_model'
 95
 96# Perform training
 97history = train(
 98    data_feeder,
 99    model_dir,
100    data_settings,
101    model,
102    training_settings
103)





You can visualize how well the training progressed by plotting the contents of
the history variable returned.

106# Plot training & validation history
107fig, ax = plt.subplots(2, sharex=True, figsize=(12, 9))
108ax[0].plot(
109    history['train_epochs'], history['binary_accuracy'], 'r',
110    history['eval_epochs'], history['val_binary_accuracy'], 'g')
111ax[0].set_ylabel('Accuracy')
112ax[1].plot(
113    history['train_epochs'], history['loss'], 'r',
114    history['eval_epochs'], history['val_loss'], 'g')
115ax[1].set_yscale('log')
116ax[1].set_xlabel('Epoch')
117ax[1].set_ylabel('Loss')
118plt.show()





You may tune the training parameters above and repeat the training step until
the training and validation accuracy/loss reach desired levels.



3. Performance assessment


3.1. Run on test dataset

If you have a test dataset available for assessing performance, you can easily
run the trained model on that dataset. Simply point out where to fetch the test
dataset from.

Similar to how training annotation data were presented (by associating annotation
files to audio files), we also need to specify which test annotation files
correspond to which test audio files (or, in this example, to sub-directories
containing a collection of test files).

122# The root directories under which the test data (audio files and
123# corresponding annotation files) are available.
124test_audio_root = '/home/shyam/projects/NARW/data/test_audio'
125test_annots_root = '/home/shyam/projects/NARW/data/test_annotations'
126
127# Map audio files to corresponding annotation files
128test_audio_annot_list = [
129    ['NOPP6_EST_20090401', 'NOPP6_20090401_RW_upcalls.selections.txt'],
130    ['NOPP6_EST_20090402', 'NOPP6_20090402_RW_upcalls.selections.txt'],
131    ['NOPP6_EST_20090403', 'NOPP6_20090403_RW_upcalls.selections.txt'],
132]





Now apply the trained model to this test dataset. During testing, it is useful
to save raw per-clip recognition scores which can be subsequently analyzed for
assessing the model’s recognition performance.

135# Directory in which raw detection scores will be saved
136raw_detections_root = '/home/shyam/projects/NARW/test_audio_raw_detections'
137
138# Run the model (detector/classifier)
139recognize(
140    model_dir,
141    test_audio_root,
142    raw_detections_dir=raw_detections_root,
143    batch_size=64,     # Increasing this may improve speed if there's enough RAM
144    recursive=True,    # Process subdirectories also
145    show_progress=True
146)





The recognize() function supports many customizations.
See function API documentation for more details.



3.2. Determine performance

Now, compute performance metrics.

149# Initialize a metric object with the above info
150metric = assessments.PrecisionRecall(
151    test_audio_annot_list,
152    raw_detections_root, test_annots_root)
153# The metric supports several options (including setting explicit thresholds).
154# Refer to class documentation for more details.
155
156# Run the assessments and gather results
157per_class_pr, overall_pr = metric.assess()





And, visualize the assessments.

160# Plot PR curves.
161for class_name, pr in per_class_pr.items():
162    print('-----', class_name, '-----')
163    plt.plot(pr['recall'], pr['precision'], 'rd-')
164    plt.xlabel('Recall')
165    plt.ylabel('Precision')
166    plt.grid()
167    plt.show()
168
169# Similarly, you could plot the contents of 'overall_pr' too





By analyzing the precision-recall curve, you can pick an operational threshold
that yields the desired precision vs. recall trade-off.




4. Use the trained model

Once you are settled on a choice of detection threshold that yields a suitable
precision-recall trade-off, you can apply the trained model on new recordings.

Koogu supports two ways of using a trained model.


4.1. Batch processing

In most common applications, one would want to be able to batch process
large collections of audio files with a trained model.

In this mode, automatic recognition results are written out in RavenPro [https://ravensoundsoftware.com/software/raven-pro/] selection table format
after applying an algorithm to group together detections of the same class across
contiguous clips.

173# Path to directory containing audio files (may contain subdirectories too)
174field_recordings_root = '/home/shyam/projects/NARW/field_recordings'
175field_rec_detections_root = '/home/shyam/projects/NARW/field_rec_detections'
176
177chosen_threshold = 0.75
178
179recognize(
180    model_dir,
181    field_recordings_root,
182    output_dir=field_rec_detections_root,
183    threshold=chosen_threshold,
184    reject_class='Other',                      # Only output target class dets
185    #clip_advance=0.5,                         # Can use different clip advance
186    batch_size=64,                             # Can go higher on good computers
187    num_fetch_threads=4,                       # Parallel-process for speed
188    recursive=True,                            # Process subdirectories also
189    show_progress=True
190)





The recognize() function supports many customizations.
See function API documentation for more details.



4.2 Custom processing

Sometimes, one may need to process audio data that is not available in the form
of audio files (or in unsupported formats). For example, one may want to apply
a trained model to live-stream acoustic feeds. Koogu facilitates such use of a
trained model via an additional interface in which you implement the task of
preparing the data (breaking up into clips) in the format that a model expects.
Then, you simply pass the clips to analyze_clips().

from koogu.model import TrainedModel
from koogu.inference import analyze_clips

# Load the trained model
trained_model = TrainedModel(model_dir)

# Read in the audio samples from a file (using one of SoundFile, AudioRead,
# scipy.io.wavfile, etc.), or buffer-in from a live stream.

# As with the model trained in the above example, you may need to resample the
# new data to 1 kHz, and then break them up into clips of length 2 s to match
# the trained model's input size.

not_end = True

while not_end:

    my_clips = ...
    # say we got 6 clips, making it a 6 x 2000 numpy array

    # Run detections and get per-clip scores for each class
    scores, processing_time = analyze_clips(trained_model, my_clips)
    # Given 6 clips, we get 'scores' to be a 6 x 2 array

    # ... do something with the results
    ...











            

          

      

      

    

  

    
      
          
            
  
Advanced usage



	Custom feeders

	Data augmentation








            

          

      

      

    

  

    
      
          
            
  
Custom feeders

While the basic feeders DataFeeder and SpectralDataFeeder were designed to work with data that were already pre-processed (resampled, filtered, segmented using the Data pre-processing interface) and stored in compressed numpy format, certain applications may require data to be loaded and fed into the training pipeline via other mechanisms/files/formats (for example, feeding directly from audio files or from a database object). Koogu facilitates these by allowing users to define custom feeders that implement their desired logic.

Custom feeders can be defined by extending the abstract class koogu.data.feeder.BaseFeeder.


Note

This requires writing code to use the TensorFlow API directly.



The below example shows an implementation which extends the BaseFeeder class to feed clips by loading directly from audio files.

import os
import tensorflow as tf
from koogu.data.feeder import BaseFeeder

# Assuming that you have saved 1 second long audio clips each containing
# sounds from one of three species of frogs, and that the audio clips
# are available as .wav files organized under species-specific directories.

fs = 24000        # sampling frequency of the audio files
directories_as_class_names = [
    'Lithobates sylvaticus',
    'Lithobates catesbeianus',
    'Dryophytes versicolor'
]


def read_files(filelist, sp_idx):
    # Utility function (a generator) to read a list of audio files one by one

    # One-hot encoded label for the current species
    label = tf.one_hot(sp_idx, 3)

    for fname in filelist:
        # Read in the audio samples from
        #   directories_as_class_names[sp_idx] + '/' + fname.decode()
        # using one of SoundFile, AudioRead, scipy.io.wavfile, etc.
        clip = ...

        # return the clip and the label
        yield clip, label


class MyFeeder(BaseFeeder):

    def __init__(self):
        """
        Register number of samples available, and decide how to split
        train vs test subsets.
        """

        # Get the list of files available in each directory/class
        self.sp0_files = os.listdir(directories_as_class_names[0])
        self.sp1_files = os.listdir(directories_as_class_names[1])
        self.sp2_files = os.listdir(directories_as_class_names[2])

        # Shuffle the lists' contents as desired
        #  ...

        # File/sample counts per species
        file_counts = [
            len(self.sp0_files),
            len(self.sp1_files),
            len(self.sp2_files)
        ]

        # Earmark 15% for validation; remaining will be used as training samples
        per_class_training_samples = [0, 0, 0]
        per_class_eval_samples = [0, 0, 0]
        for class_idx, fc in enumerate(file_counts):
            per_class_training_samples[class_idx] = int(round(fc * 0.85))
            per_class_eval_samples[class_idx] = \
                fc - per_class_training_samples[class_idx]

        # Invoke the parent constructor
        super(MyFeeder, self).__init__(
            (fs, ),
            per_class_training_samples, per_class_eval_samples,
            directories_as_class_names)

    def make_dataset(self, is_training, batch_size, **kwargs):
        """
        Build a TensorFlow Dataset comprising all training or eval clips
        """

        # Make class-specific datasets
        sp_ds = [None, None, None]
        for sp_idx, sp_files in enumerate(
                [self.sp0_files, self.sp1_files, self.sp2_files]):

            # Restrict which files to read based on train/eval mode
            split_idx = self.training_samples_per_class[sp_idx]
            if is_training:
                filelist = sp_files[:split_idx]
            else:
                filelist = sp_files[split_idx:]

            sp_ds[sp_idx] = tf.data.Dataset.from_generator(
                lambda a, b: read_files(a, b),
                args=(filelist, sp_idx),
                output_signature=(
                    tf.TensorSpec(shape=(fs, ), dtype=tf.float32),  # clip
                    tf.TensorSpec(shape=(3, ), dtype=tf.float32)    # label
                )
            )

        # Concatenate all class-specific data
        dataset = sp_ds[0].concatenate(sp_ds[1]).concatenate(sp_ds[2])

        # Invoke the base class functionality to shuffle & batch, or implement
        # the logic yourself as needed.
        return self._queue_and_batch(dataset, is_training, batch_size, **kwargs)

    def transform(self, sample, label, is_training, **kwargs):
        # Pass as-is, not doing any transformation in this example
        return sample, label

    def pre_transform(self, sample, label, is_training, **kwargs):
        # Pass as-is, not applying any augmentations in this example
        return sample, label

    def post_transform(self, sample, label, is_training, **kwargs):
        # Pass as-is, not applying any augmentations in this example
        return sample, label






Converting waveforms to spectrograms

In the above example, the loaded audio clips will be presented as-is (as waveforms) to the model during training/validation. You can convert the clips into power spectral density spectrograms before they are presented to the model, by implementing the functionality in the transform() method and overriding the get_shape_transformation_info() method as shown below.

    # --- update the constructor from the above example ---
    def __init__(self):
      ...
      ...
      # Invoke the parent constructor
      super(MyFeeder, ...
      ...
      ...

      # Define the settings for transformation
      spec_settings = {
          'win_len': ...
          # ...
          # see koogu.data.tf_transformations.Audio2Spectral for list of keys
      }

      # Instantiate the transformation object
      self._transform = koogu.data.tf_transformations.Audio2Spectral(fs, spec_settings)

      self._in_shape = (fs, )

      # Update parent's member variable to reflect the transformed output shape
      self._shape = self._transform.compute_output_shape([1] + self._in_shape)[1:]

    def transform(self, clip, label, is_training, **kwargs):

      # Apply the transformation
      output = self._transform(clip)

      return output, label

    def get_shape_transformation_info(self):
      return self._in_shape, self._transform










            

          

      

      

    

  

    
      
          
            
  
Data augmentation

On-the-fly data augmentations can be applied during training/validation by implementing the desired augmentation operations in the pre_transform() and post_transform() methods of the classes derived from koogu.data.feeder.BaseFeeder. Given that the CNN models used in bioacoustics typically operate on inputs that are transformed into 2-dimensional spectrograms, augmentations applicable to time-domain waveforms can be implemented in pre_transform() and augmentations applicable to spectrograms can be implemented in post_transform().


Note

This requires writing code to use the TensorFlow API directly.



The below example extends koogu.data.feeder.SpectralDataFeeder by adding two augmentation operations in the time-domain and one in the spectro-temporal domain. The example also demonstrates the use of a few pre-defined & customizable augmentations. You may also add code in these methods to implement your own types of augmentation.

import tensorflow as tf
from koogu.data.augmentations import Temporal, SpectroTemporal


class MySpectralDataFeeder(koogu.data.feeder.SpectralDataFeeder):

    def pre_transform(self, clip, label, is_training, **kwargs):
        """
        Applying augmentations to waveform.
        """

        output = clip

        # Added noise will have an amplitude that is -30 dB to -18 dB below
        # the peak amplitude of the input.
        gauss_noise = Temporal.AddGaussianNoise((-30, -18))

        # Add Gaussian noise to 25% of inputs.
        output = tf.cond(tf.random.uniform([], 0, 1) <= 1 / 4,
                         lambda: gauss_noise(output),
                         lambda: output)

        # The volume of the input will be linearly lowered/increased over its
        # duration, by a factor ≤ 3 dB.
        vol_ramp = Temporal.RampVolume((-3, 3))

        # Alter volume for 10% of the inputs.
        output = tf.cond(tf.random.uniform([], 0, 1) <= 1 / 10,
                         lambda: vol_ramp(output),
                         lambda: output)

        return output, label

    def post_transform(self, spec, label, is_training, **kwargs):
        """
        Applying augmentations to power spectral density spectrogram.
        """

        output = spec

        # Smear energies along the time-axis while retaining the frequency
        # content intact.
        smear_time = SpectroTemporal.SmearTime((-2, 2))

        # Apply to one in three inputs.
        output = tf.cond(tf.random.uniform([], 0, 1) <= 1 / 3,
                         lambda: smear_time(output),
                         lambda: output)

        return output, label





The above example demonstrates finer control in implementing augmentations wherein one may employ branching/looping constructs to combine different augmentations as desired.


Convenience interface

Sometimes, you may want to simply apply a series of augmentations in a particular order, with respective chosen probabilities. The below code snippet demonstrates the use of convenience interface to apply chained augmentations. You need not use any TensorFlow API here 😀.

    def pre_transform(self, clip, label, is_training, **kwargs):
        """
        Applying augmentations to waveform.
        """

        # List of time-domain augmentations
        augmentations = [
            Temporal.AddGaussianNoise((-30, -18)),
            Temporal.RampVolume((-3, 3))
        ]

        # At what rates should each be applied (same ordering as above)
        probabilities = [
            0.25,       # apply to 1 in 4 clips
            0.10        # apply to 1 in 10 clips
        ]

        output = Temporal.apply_chain(clip, augmentations, probabilities)

        return output, label

    def post_transform(self, spec, label, is_training, **kwargs):
        """
        Applying augmentations to power spectral density spectrogram.
        """

        # List of spectrogram augmentations
        augmentations = [
            SpectroTemporal.SmearTime((-2, 2)),
            SpectroTemporal.SquishFrequency((-1, 1))
        ]

        # At what rates should each be applied (same ordering as above)
        probabilities = [
            0.33,       # apply to 1 in 3 input spectrograms
            0.20        # apply to 1 in 5 input spectrograms
        ]

        output = SpectrroTemporal.apply_chain(spec, augmentations, probabilities)

        return output, label









            

          

      

      

    

  

    
      
          
            
  
API documentation



	Data
	Pre-processing
	from_selection_table_map()

	from_top_level_dirs()





	Transformation
	Audio2Spectral

	GaussianBlur

	Linear2dB





	Feeder
	SpectralDataFeeder

	DataFeeder

	BaseFeeder





	Augmentation
	Time-domain augmentations

	Spectro-temporal augmentations

	Convenience interface









	Model
	TrainedModel
	TrainedModel.infer()

	TrainedModel.audio_settings

	TrainedModel.class_names

	TrainedModel.spec_settings





	BaseArchitecture
	BaseArchitecture.build_network()









	Training
	train()





	Inferencing
	analyze_clips()

	recognize()





	Misc
	Annotations & Detections
	LabelHelper

	SelectionTableReader

	assess_annotations_and_clips_match()

	assess_annotations_and_detections_match()

	postprocess_detections()





	Performance assessment
	PrecisionRecall

	BaseMetric
















            

          

      

      

    

  

    
      
          
            
  
Data



	Pre-processing

	Transformation

	Feeder

	Augmentation








            

          

      

      

    

  

    
      
          
            
  
Data pre-processing

Pre-processed data (clips + associated label/class information) are written to the
filesystem for later consumption during model training. In addition to extracting
clips from raw audio, the below interfaces also support the following audio
pre-processing operations -


	standardizing the sampling frequencies of all recordings,


	application of low-pass, high-pass or band-pass filters, and


	waveform normalization.




The parameters for pre-processing data are specified using a Python dictionary object that is passed as a parameter (named audio_settings) to the below functions. The following keys are supported:



	desired_fs (required) The target sampling frequency (in Hz). Audio files having other sampling frequencies will be resampled to this value. Note that upsampling from a lower sampling rate introduces frequency banding in the resulting audio.


	clip_length (required) The duration of each audio segment (in seconds).


	clip_advance (required) The amount (in seconds) of overlap between successive segments is controlled by this. If clip_advance equals clip_length, then the overlap between successive segments will be zero.


	filterspec (optional) If specified, must be a 3-element ordered list/tuple specifying -


	filter order (integer)


	cutoff frequency(ies) (a 1-element or 2-element list/tuple)


	filter type (string; one of ‘lowpass’, ‘highpass’ or ‘bandpass’)




If filter type is ‘bandpass’, the the cutoff frequency must be a 2-element list/tuple.



	normalize_clips (optional; default: True) If True, will scale the waveform within each resulting clip to be in the range [-1.0, 1.0].








	
koogu.data.preprocess.from_selection_table_map(audio_settings, audio_seltab_list, audio_root, seltab_root, output_root, desired_labels=None, remap_labels_dict=None, negative_class_label=None, **kwargs)

	Pre-process training data using info contained in audio_seltab_list.


	Parameters:

	
	audio_settings – A dictionary specifying the parameters for processing
audio from files.


	audio_seltab_list – A list containing pairs (tuples or sub-lists) of
relative paths to audio files and the corresponding annotation
(selection table) files.


	audio_root – The full paths of audio files listed in
audio_seltab_list are resolved using this as the base directory.


	seltab_root – The full paths of annotations files listed in
audio_seltab_list are resolved using this as the base directory.


	output_root – “Prepared” data will be written to this directory.


	desired_labels – The target set of class labels. If not None, must be
a list of class labels. Any selections (read from the selection tables)
having labels that are not in this list will be discarded. This list
will be used to populate classes_list.json that will define the classes
for the project. If None, then the list of classes will be populated
with the annotation labels read from all selection tables.


	remap_labels_dict – If not None, must be a Python dictionary
describing mapping of class labels. For details, see similarly named
parameter to the constructor of
koogu.utils.detections.LabelHelper.


Note

If desired_labels is not None, mappings for which targets
are not listed in desired_labels will be ignored.






	negative_class_label – A string (e.g. ‘Other’, ‘Noise’) which will be
used as a label to identify the negative class clips (those that did not
match any annotations). If None (default), saving of negative class
clips will be disabled.








Other parameters specific to
koogu.utils.detections.assess_annotations_and_clips_match()
can also be specified, and will be passed as-is to the function.


	Returns:

	A dictionary whose keys are annotation tags (either discovered from
the set of annotations, or same as desired_labels if not None) and
the values are the number of clips produced for the corresponding class.










	
koogu.data.preprocess.from_top_level_dirs(audio_settings, class_dirs, audio_root, output_root, remap_labels_dict=None, **kwargs)

	Pre-process training data available as audio files in class_dirs.


	Parameters:

	
	audio_settings – A dictionary specifying the parameters for processing
audio from files.


	class_dirs – A list containing relative paths to class-specific
directories containing audio files. Each directory’s contents will be
recursively searched for audio files.


	audio_root – The full paths of the class-specific directories listed
in class_dirs are resolved using this as the base directory.


	output_root – “Prepared” data will be written to this directory.


	remap_labels_dict – If not None, must be a Python dictionary
describing mapping of class labels. For details, see similarly named
parameter to the constructor of
koogu.utils.detections.LabelHelper.


	filetypes – (optional) Restrict listing to files matching extensions
specified in this parameter. Has defaults if unspecified.






	Returns:

	A dictionary whose keys are annotation tags (discovered from the
set of annotations) and the values are the number of clips produced for
the corresponding class.












            

          

      

      

    

  

    
      
          
            
  
Data transformation

Certain data transformations that are unavailable in TensorFlow/Keras are implemented as custom Keras layers in Koogu.


	
class koogu.data.tf_transformations.Audio2Spectral(*args: Any, **kwargs: Any)

	Layer for converting waveforms into time-frequency representations.


	Parameters:

	
	fs – sampling frequency of the data in the last dimension of inputs.


	spec_settings – A Python dictionary describing the settings to be used
for producing spectrograms. Supported keys in the dictionary include:


	win_len: (required)
Length of the analysis window (in seconds)


	win_overlap_prc: (required)
Fraction of the analysis window to have as overlap between successive
analysis windows. Commonly, a 50% (or 0.50) overlap is considered.


	nfft_equals_win_len: (optional; boolean)
If True (default), NFFT will equal the number of samples resulting
from win_len. If False, NFFT will be set to the next power of 2 that
is ≥ the number of samples resulting from win_len.


	tf_rep_type: (optional)
A string specifying the transformation output. ‘spec’ results in a
linear scale spectrogram. ‘spec_db’ (default) results in a
logarithmic scale (dB) spectrogram.


	eps: (default: 1e-10)
A small positive quantity added to avoid computing log(0.0).


	bandwidth_clip: (optional; 2-element list/tuple)
If specified, the generated spectrogram will be clipped along the
frequency axis to only include components in the specified bandwidth.







	eps – (optional) If specified, will override the eps value in
spec_settings.


	name – (optional; string) Name for the layer.













	
class koogu.data.tf_transformations.GaussianBlur(*args: Any, **kwargs: Any)

	Layer for applying Gaussian blur to time-frequency (tf) representations.


	Parameters:

	
	sigma – Scalar value defining the Gaussian kernel.


	apply_2d – (boolean; default: True) If True, will apply smoothing
along both time- and frequency axes. Otherwise, smoothing is only
applied along the frequency axis.













	
class koogu.data.tf_transformations.Linear2dB(*args: Any, **kwargs: Any)

	Layer for converting time-frequency (tf) representations from linear to
decibel scale.


	Parameters:

	
	eps – Epsilon value to add, for avoiding computing log(0.0).


	full_scale – (boolean) Whether to convert to dB full-scale.


	name – (optional; string) Name for the layer.















            

          

      

      

    

  

    
      
          
            
  
Data feeder

For most common applications in bioacoustics, SpectralDataFeeder offers a convenient way to convert prepared audio clips into spectrograms on-the-fly during training/validation. DataFeeder does not apply any transformations and feeds audio clips as-is. Both these classes may be extended to add additional functionalities, change or add new transformation functions, and to include on-the-fly data augmentations.

For processing prepared data generated by mechanisms outside of Koogu, extend koogu.data.feeder.BaseFeeder to implement custom logic to feed your data into the Koogu training pipeline.


	
class koogu.data.feeder.SpectralDataFeeder(data_dir, fs, spec_settings, **kwargs)

	Bases: DataFeeder

A handy data feeder, which converts prepared audio clips into power spectral
density spectrograms.


	Parameters:

	
	data_dir – Directory under which prepared data (.npz files) are
available.


	fs – Sampling frequency of the prepared data.


	spec_settings – A Python dictionary. For a list of possible keys and
values, see parameters to
Audio2Spectral.


	normalize_clips – (optional; boolean) If True (default), input clips
will be normalized before applying transform (computing spectrograms).


	cache – (optional; boolean) If True (default), the logic to ‘queue &
batch’ training/evaluation samples (loaded from disk) will also cache
the samples. Helps speed up processing.








Other parameters applicable to the parent DataFeeder class may also
be specified.






	
class koogu.data.feeder.DataFeeder(data_dir, validation_split=None, min_clips_per_class=None, max_clips_per_class=None, random_state_seed=None, **kwargs)

	Bases: BaseFeeder

A class for loading prepared data from numpy .npz files and feeding them
untransformed into the training/evaluation pipeline.


	Parameters:

	
	data_dir – Directory under which prepared data (.npz files) are
available.


	validation_split – (default: None) Fraction of the available data that
must be held out for validation. If None, all available data will be
used as training samples.


	min_clips_per_class – (default: None) The minimum number of per-class
samples that must be available. If fewer samples are available for a
class, the class will be omitted. If None, no classes will be omitted.


	max_clips_per_class – (default: None) The maximum number of per-class
samples to consider among what is available, for each class. If more
samples are available for any class, the specified number of samples
will be randomly selected. If None, no limits will be imposed.


	random_state_seed – (default: None) A seed (integer) used to
initialize the psuedo-random number generator that makes shuffling and
other randomizing operations repeatable.


	cache – (optional; boolean) If True (default), the logic to ‘queue &
batch’ training/evaluation samples (loaded from disk) will also cache
the samples. Helps speed up processing.













	
class koogu.data.feeder.BaseFeeder(data_shape, num_training_samples, num_validation_samples, class_names, **kwargs)

	Base class defining the interface for implementing feeder classes for
building data pipelines in Koogu.


	Parameters:

	
	data_shape – Shape of the input samples presented to the model.


	num_training_samples – List of per-class counts of training samples
available.


	num_validation_samples – List of per-class counts of validation
samples available.


	class_names – List of names (str) corresponding to the different
classes in the problem space.









	
get_shape_transformation_info()

	Override in inherited class if its transform() alters the shape of
the read/input data before a dataset is returned. If not None, must
return a tuple where:


	first value is the untransformed input shape,


	second is the actual transformation function.









	
abstract make_dataset(is_training, batch_size, **kwargs)

	This function must be implemented in the derived class.

It should contain logic to load training & validation data (usually
from stored files) and construct a TensorFlow Dataset.


	Parameters:

	
	is_training – (boolean) True if operating in training mode.


	batch_size – (integer) Number of input samples from the dataset to
combine in a single batch.






	Returns:

	A tf.data.Dataset










	
abstract post_transform(sample, label, is_training, **kwargs)

	Implement this method in the derived class to apply any
post-transformation augmentations to a single input to the model (during
training and validation).


	Parameters:

	
	sample – The transformed sample to which to apply augmentations.


	label – The class info pertaining to sample.


	is_training – (boolean) True if operating in training mode.


	kwargs – Any additional parameters.






	Returns:

	A 2-tuple containing transformed sample and label.










	
abstract pre_transform(sample, label, is_training, **kwargs)

	Implement this method in the derived class to apply any
pre-transformation augmentations to a single input to the model (during
training and validation).


	Parameters:

	
	sample – The untransformed sample to which to apply augmentations.


	label – The class info pertaining to sample.


	is_training – (boolean) True if operating in training mode.


	kwargs – Any additional parameters.






	Returns:

	A 2-tuple containing transformed sample and label.










	
abstract transform(sample, label, is_training, **kwargs)

	This function must be implemented in the derived class.

It should contain logic to apply any transformations to a single input
to the model (during training and validation).


	Parameters:

	
	sample – The sample that must be ‘transformed’ before
consumption by a model.


	label – The class info pertaining to sample.


	is_training – (boolean) True if operating in training mode.


	kwargs – Any additional parameters.






	Returns:

	A 2-tuple containing transformed sample and label.










	
property class_names

	List of names (str) of the classes in the application.






	
property data_shape

	The shape of an input sample.






	
property num_classes

	The number of classes in the application.






	
property training_samples

	List of per-class training samples available.






	
property training_samples_per_class

	List of per-class validation samples available.






	
property validation_samples

	Total number of training samples available.






	
property validation_samples_per_class

	Total number of validation samples available.












            

          

      

      

    

  

    
      
          
            
  
Data augmentation

Koogu supports applying randomized on-the-fly augmentations to input samples during training/validation.


Time-domain augmentations


	
class koogu.data.augmentations.Temporal.AddEcho(delay_range, fs, level_range=None)

	Add echo. Produce echo effect by adding a dampened and delayed copy of the
input to the input. The dampened copy is produced by using a random
attenuation factor, and the phase of the dampened copy is also randomly
inverted.


	Parameters:

	
	delay_range – A 2-element list/tuple, values specified in seconds. The
delay amount will be randomly chosen from this range.


	fs – Sampling frequency of the input. The chosen delay amount will be
converted to number of samples using this value.


	level_range – A 2-element list/tuple or None (default). The
attenuation factor is derived from this range. If None, it will default
to [-18 dB, -12 dB].













	
class koogu.data.augmentations.Temporal.AddGaussianNoise(val_range)

	Add Gaussian noise.


	Parameters:

	val_range – A 2-element list/tuple. The level of the added noise will
be randomly chosen from the range val_range[0] dB to val_range[1] dB
(both must be non-positive). The peak noise level will approximately be
as many dB below the peak level of the input signal.










	
class koogu.data.augmentations.Temporal.RampVolume(val_range)

	Alter the volume of signal by ramping up/down its amplitude linearly across
the duration of the signal. In a way simulates the effect of the source
moving away or towards the receiver.


	Parameters:

	val_range – A 2-element list/tuple. Ramp factor will be randomly
chosen in the range val_range[0] dB to val_range[1] dB. If the chosen
factor is non-negative, will ramp up from ~-val dB. If the chosen factor
is negative, will ramp down to -abs(~val) dB.










	
class koogu.data.augmentations.Temporal.ShiftPitch(val_range)

	Shift the pitch of the contained sound(s) up or down.


	Parameters:

	val_range – A 2-element list/tuple. The factor by which the pitch will
be shifted will be chosen randomly from the range val_range[0] to
val_range[1]. Set the range around 1.0. If the chosen value is above
1.0, pitch will be shifted upwards. If the chosen value is below 1.0,
pitch will be shifted downwards. If the chosen value equals 1.0, there
will be no change.











Spectro-temporal augmentations


	
class koogu.data.augmentations.SpectroTemporal.AlterDistance(val_range)

	Mimic the effect of increasing/reducing the distance between a source and
receiver by attenuating/amplifying higher frequencies while keeping lower
frequencies relatively unchanged.


	Parameters:

	val_range – A 2-element list/tuple. The attenuation/amplification
factor will be randomly chosen from the range val_range[0] dB to
val_range[1] dB. A negative value chosen effects attenuation, while a
positive value chosen effects amplification.










	
class koogu.data.augmentations.SpectroTemporal.SmearFrequency(val_range)

	Smear the spectrogram along the frequency axis. Can have the effect of
shifting the pitch of the contained sounds.


	Parameters:

	val_range – A 2-element integer list/tuple. The amount to smear is
derived from a value chosen in the integer range val_range[0] to
val_range[1]. Specify the range to reflect the number of frequency bins
that will be involved in the smearing operation. If a positive value is
chosen, the smearing occurs upwards. If a negative value is chosen,
the smearing occurs downwards.










	
class koogu.data.augmentations.SpectroTemporal.SmearTime(val_range)

	Smear the spectrogram along the time axis. Can have the effect of
elongating the duration of the contained sounds.


	Parameters:

	val_range – A 2-element integer list/tuple. The amount to smear is
derived from a value chosen in the integer range val_range[0] to
val_range[1]. Specify the range to reflect the number of time windows
that will be involved in the smearing operation. If a positive value is
chosen, the smearing occurs forwards. If a negative value is chosen, the
smearing occurs backwards.










	
class koogu.data.augmentations.SpectroTemporal.SquishFrequency(val_range)

	Squish the spectrogram along the frequency axis. Can have the effect of
shifting the pitch of the contained sounds.


	Parameters:

	val_range – A 2-element integer list/tuple. The amount to squish is
derived from a value chosen in the integer range val_range[0] to
val_range[1]. Specify the range to reflect the number of frequency bins
that will be involved in the squishing operation. If a positive value is
chosen, the squishing occurs upwards. If a negative value is chosen, the
squishing occurs downwards.










	
class koogu.data.augmentations.SpectroTemporal.SquishTime(val_range)

	Squish the spectrogram along the time axis. Can have the effect of
compressing the duration of the contained sounds.


	Parameters:

	val_range – A 2-element integer list/tuple. The amount to squish is
derived from a value chosen in the integer range val_range[0] to
val_range[1]. Specify the range to reflect the number of time windows
that will be involved in the squishing operation. If a positive value is
chosen, the squishing occurs forwards. If a negative value is chosen,
the squishing occurs backwards.











Convenience interface


	
static Temporal.apply_chain(clip, augmentations, probabilities, t_axis=-1)

	Apply a chain of Temporal augmentations.


	Parameters:

	
	clip – The audio clip to apply the augmentations to.


	augmentations – List of the Temporal augmentations to apply.


	probabilities – List of probabilities (each in the range 0-1), one
per augmentation listed in augmentations.


	t_axis – (Defaults to -1, the last dimension) Index of the axis in
clip corresponding to its time axis.






	Returns:

	The tensor clip after applying the specified augmentations.










	
static SpectroTemporal.apply_chain(spec, augmentations, probabilities, f_axis=0, t_axis=1)

	Apply a chain of SpectroTemporal augmentations.


	Parameters:

	
	spec – The spectrogram to apply the augmentations to.


	augmentations – List of the SpectroTemporal augmentations to
apply.


	probabilities – List of probabilities (each in the range 0-1), one
per augmentation listed in augmentations.


	f_axis – (Defaults to 0) Index of the axis in spec corresponding
to its frequency axis.


	t_axis – (Defaults to 1) Index of the axis in spec corresponding
to its time axis.






	Returns:

	The tensor spec after applying the specified augmentations.













            

          

      

      

    

  

    
      
          
            
  
Model

Koogu supports a few ready-to-use architectures.

User-defined custom architectures can be created by implementing the abstract base class koogu.model.architectures.BaseArchitecture.







	
class koogu.model.TrainedModel(saved_model_dir)

	An interface for using a trained model for making inferences.


	Parameters:

	saved_model_dir – Path to the directory from which to load a trained
model.






	
infer(inputs)

	Process data using the trained model.


	Parameters:

	inputs – A 2D numpy array. The first dimension corresponds to the
number of input waveform clips. The second dimension contains clips’
samples.



	Returns:

	An NxM numpy array of scores corresponding to the N input
clips and M classes.










	
property audio_settings

	Audio settings that were used for preparing model inputs.






	
property class_names

	List of class names corresponding to the scores output by the model for
each input.






	
property spec_settings

	Spectrogram settings used for transforming waveforms into time-frequency
representations. If no transformation was applied (during training),
then this property will be None.










	
class koogu.model.architectures.BaseArchitecture(is_2d=True, multilabel=True, dtype=None, name=None)

	Base class for implementing custom user-defined architectures.


	Parameters:

	
	is_2d – (bool; default:True) Set to True for spectrogram-like
inputs, and to False for waveform-like (time-domain) inputs.


	multilabel – (bool; default: True) Set appropriately so that the
loss function and accuracy metrics can be chosen correctly. A multilabel
model’s Logits (final) layer will have Sigmoid activation whereas a
single-label model’s will have SoftMax activation.


	dtype – Tensorflow data type of the model’s weights (default:
tf.float32).


	name – Name of the model.









	
abstract build_network(input_tensor, is_training, data_format, **kwargs)

	This method must be implemented in the derived class.

It should contain logic to construct the desired sequential or
functional model network starting from the input_tensor.


Note

Do not add the Logits layer in your implementation. It will be
added by internal code.




	Parameters:

	
	input_tensor – The Keras tensor to use as the input placeholder
in model that will be built.


	is_training – (boolean) Indicates if operating in training mode.
Certain elements of the network (e.g., dropout layers) may be
excluded when not in training mode.


	data_format – One of ‘channels_last’ or ‘channels_first’.






	Returns:

	Must return a Keras tensor corresponding to outputs of the
architecture.
















            

          

      

      

    

  

    
      
          
            
  
Available architectures


	
class koogu.model.architectures.ConvNet(filters_per_layer, **kwargs)

	Boilerplate ConvNet network-building logic that can be used, with
appropriate customization of parameters, to build networks like LeNet,
AlexNet, etc.


	Parameters:

	
	filters_per_layer – (list/tuple of ints) The length of the list/tuple
defines the depth of the network and each value in it specifies the
number of filters at the corresponding level.


	pool_sizes – (optional) Must be a list of 2-element tuples (of ints)
specifying the factors by which to downscale (vertical, horizontal)
following each convolution. The length of the list must be the same as
that of filters_per_layer. By default, a pool size of (2, 2) is
considered throughout.


	pool_strides – (optional; defaults to whatever pool_sizes is) Must
be of similar structure as pool_sizes, and will define the strides
that the pooling operation takes along the horizontal and vertical
directions.








Other helpful customizations


	Parameters:

	
	add_batchnorm – (bool; default: False) If True, batch normalization
layers will be added following each convolution layer.


	pooling_type – (optional) By default, average pooling is performed.
Set to ‘max’ to use max pooling instead.








Koogu-style model customizations


	Parameters:

	
	preproc – (optional) Use this to add pre-convolution operations to the
model. If specified, must be a list of 2-element tuples, with each tuple
containing -


	the name of the operation (either a compatible Keras layer or a
transformation from koogu.data.tf_transformations.


	a Python dictionary specifying parameters to the operation.







	dense_layers – (optional) Use this to add fully-connected (dense)
layers to the end of the model network. Can specify a single integer
(the added layer will have as many nodes) or a list of integers to add
multiple (connected in sequence) dense layers.













	
class koogu.model.architectures.DenseNet(layers_per_block, **kwargs)

	DenseNet (Huang et. al., 2016 [http://arxiv.org/abs/1608.06993]).
This implementation supports both with and without bottleneck.


	Parameters:

	
	layers_per_block – (list/tuple of ints) The length of the list/tuple
defines the number of dense-blocks in the network and each value in the
list specifies the number of composite function layers
(made up of BatchNorm-Conv-ReLU) in the corresponding dense-block.


	growth_rate – (optional; default: 12) Number of composite function
layers per dense-block.


	compression – (optional; default: 1.0) Specifies the rate of
compression applied in transition blocks. A value of 1.0 means no
compression; specify value < 1.0 to bring about compression.


	with_bottleneck – (bool; default: False) Weather to include bottleneck
layers.








Other helpful customizations


	Parameters:

	
	quasi_dense – (bool; default: False) If True, feed-forward connections
within a dense-block will be reduced, as described in
Madhusudhana et. al. 2021 [https://doi.org/10.1098/rsif.2021.0297].


	pooling_type – (optional) By default, average pooling is performed.
Set to ‘max’ to use max pooling instead.


	pool_sizes – (optional) Must be a list of 2-element tuples (of ints)
specifying the factors by which to downscale (vertical, horizontal)
in each transition block. The length of the list must be one less than
that of layers_per_block. By default, a pool size of (3, 3) is
considered throughout.


	pool_strides – (optional; defaults to whatever pool_sizes is) Must
be of similar structure as pool_sizes, and will define the strides
that the pooling operation takes along the horizontal and vertical
directions.








Koogu-style model customizations


	Parameters:

	
	preproc – (optional) Use this to add pre-convolution operations to the
model. If specified, must be a list of 2-element tuples, with each tuple
containing -


	the name of the operation (either a compatible Keras layer or a
transformation from koogu.data.tf_transformations.


	a Python dictionary specifying parameters to the operation.







	dense_layers – (optional) Use this to add fully-connected (dense)
layers to the end of the model network. Can specify a single integer
(the added layer will have as many nodes) or a list of integers to add
multiple (connected in sequence) dense layers.















            

          

      

      

    

  

    
      
          
            
  
Training


	
koogu.train(data_feeder, model_dir, data_settings, model_architecture, training_config, verbose=2, **kwargs)

	Perform training and evaluation.


	Parameters:

	
	data_feeder – An instance of a BaseFeeder
implementation (e.g., SpectralDataFeeder).


	model_dir – Path to the directory into which the trained model and its
supporting files will be written.


	data_settings – A Python dictionary containing -


	audio_settings : a sub-dictionary specifying parameters considered
in data pre-processing,


	spec_settings : (optional) a sub-dictionary specifying parameters
considered in data transformation (if any considered).




These settings are not used during training, but must be specified so
that they will be saved along with the trained model after training
completes.




	model_architecture – An instance of a
BaseArchitecture implementation (e.g.,
DenseNet).


	training_settings – Training hyperparameters. A Python dictionary
containing settings for defining the training process, controlling
regularization, etc.

Required fields


	batch_size: (integer) Number of input samples from the dataset to
combine in a single batch.


	epochs: (integer) Number of epochs to perform the training for.




Optional fields


	optimizer: The optimizer to use during training. Must be a 2-element
tuple specifying the name (string) of the optimizer and its
parameters (a Python dictionary containing key-value pairs). Defaults
to ['Adam', {}].


	weighted_loss: (boolean; default: True) When enabled, loss function
during training will be weighted based on the disparities in
per-class training samples available.


	l2_weight_decay: To enable, set to a reasonable value (e.g., 1e-4).
Enabling it will add L2 regularization, with the specified decay.


	learning_rate: Learning rate for training (default: 0.001). Can also
specify dynamic rates, in one of two ways:


	set this key to a static value, and specify both
lr_change_at_epochs and lr_update_factors (see below), or


	set this key to be a callable (e.g., function) which takes the
current epoch number as input and returns the desired learning rate
for the epoch.






	lr_change_at_epochs: List of integers specifying the epochs at which
the learning rate must be updated. If specifying this, learning_rate
must be static.


	lr_update_factors: List of integers (one element more than
lr_change_at_epochs) specifying the decimation factor of the current
learning rate at the set epochs. If specifying this, learning_rate
must be static.


	dropout_rate: Helps the model generalize better. Set to a small
positive quantity (e.g., 0.05). Functionality is disabled by default.


	epochs_between_evals: (optional; integer) Number of epochs to wait
before performing another validation run. (default: 5)







	verbose – Level of information to display. Set to -


0 - for no display

1 - to display progress bars for each epoch

2 - to display one-line summary per epoch (default)






	random_seed – (optional) A seed (integer) used to initialize the
psuedo-random number generator that makes setting randomized initial
values for model parameters repeatable.






	Returns:

	A Python dictionary containing a record of the training history,
including the “training” and “evaluation” accuracies and losses at each
epoch.












            

          

      

      

    

  

    
      
          
            
  
Inferencing


	
koogu.inference.analyze_clips(trained_model, clips, batch_size=1, audio_filepath=None)

	Apply a trained model to one or more audio clips and obtain scores.


	Parameters:

	
	trained_model – A koogu.model.TrainedModel instance.


	clips – An [N x ?] numpy array of N input waveforms.


	batch_size – (default: 1) Control how many clips are processed in a
single batch. Increasing this helps improve throughput, but requires
more RAM.


	audio_filepath – (default: None) If not None, will display a progress
bar.






	Returns:

	A 2-element tuple consisting of -


	detection/classification scores ([N x M] numpy array corresponding to
the N clips and M target classes), and


	the total time taken to process all the clips.















	
koogu.inference.recognize(model_dir, audio_root, output_dir=None, raw_detections_dir=None, **kwargs)

	Batch-process audio files using a trained model.


	Parameters:

	
	model_dir – Path to directory where the trained model for use in
making inferences is available.


	audio_root – Path to directory from which to load audio files for
inferences. Can also set this to a single audio file instead of a
directory. See optional parameters recursive and combine_outputs
that may be used when audio_root points to a directory.


	output_dir – If not None, processed recognition results (Raven
selection tables) will be written out into this directory. At least
one of output_dir or raw_detections_dir must be specified.


	raw_detections_dir – If not None, raw outputs from the model will be
written out into this directory. At least one of output_dir or
raw_detections_dir must be specified.








Optional parameters


	Parameters:

	
	clip_advance – If specified, override the value that was read from
the model’s files. The value defines the amount of clip advance when
preparing audio.


	threshold – (float, 0-1) Suppress writing of detections with scores
below this value. Defaults to 0.


	recursive – (bool) If set, the contents of audio_root will be
processed recursively.


	filetypes – Audio file types to restrict processing to. Option is
ignored if processing a single file. Can specify multiple types, as a
list. Defaults to [‘.wav’, ‘.WAV’, ‘.flac’, ‘.aif’, ‘.mp3’].


	combine_outputs – (bool) When processing audio files from entire
directories, enabling this option combines recognition results of
processing every file within a directory and writes them to a single
output file. When enabled, outputs will contain 2 additional fields
describing offsets of detections in the corresponding audio files.


	channels – (int or list of ints) When audio files have multiple
channels, set which channels to restrict processing to. If
unspecified, all available channels will be processed. E.g., setting
to 1 saves the first channel, setting to [1, 3] saves the first and
third channels.


	scale_scores – (bool) Enabling this will scale the raw scores before
they are written out. Use of this setting is recommended only when the
output of a model is based on softmax (not multi-label) and the model
was trained with training data where each input corresponded to a
single class.


	frequency_extents – A dictionary of per-class frequency bounds of
each label class. Will be used when producing the output selection
table files. If unspecified, the “Low Frequency (Hz)” and
“High Frequency (Hz)” fields in the output table will be the same for
all classes and will be set equal to the bandwidth used in preparing
model inputs.


	reject_class – Name (case sensitive) of the class (like ‘Noise’ or
‘Other’) that must be ignored from the recognition results. The
corresponding detections will not be written to the output selection
tables. Can specify multiple classes for rejection, as a list.


	batch_size – (int; default: 1) Size to batch audio file’s clips into.
Increasing this may improve speed on computers with high RAM.


	num_fetch_threads – (int; default: 1) Number of background threads
that will fetch audio from files in parallel.


	show_progress – (bool) If enabled, messages indicating progress of
processing will be shown on console output.
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Annotations and Detections


	
class koogu.utils.detections.LabelHelper(classes_list, remap_labels_dict=None, negative_class_label=None, fixed_labels=True, assessment_mode=False)

	Provides functionality for manipulating and managing class labels in a
problem space, without resorting to altering selection tables.


	Parameters:

	
	classes_list – List of class labels. When used during data
preparation, the list may be generated from available classes or
be provided as a pre-defined list. When used during performance
assessments, it is typically populated from the classes_list.json
file that is saved alongside raw detections.


	remap_labels_dict – (default: None) If not None, must be a dictionary
describing mapping of class labels. Use this to


	
update existing class’ labels


(e.g. {'c1': 'new_c1'}),







	
merge together existing classes


(e.g. {'c4': 'c1'}), or







	
combine existing classes into new ones


(e.g. {'c4': 'new_c2', 'c23', 'new_c2'}).









Avoid chaining of mappings (e.g. {'c1': 'c2', 'c2': 'c3'}).




	negative_class_label – (default: None) If not None, must be a string
(e.g. ‘Other’, ‘Noise’) which will be used as a label to identify the
negative class clips (those that did not match any annotations). If
specified, will be used in conjunction with remap_labels_dict.


	fixed_labels – (bool; default: True) When True, classes_list will
remain unchanged - any new mapping targets specified in
remap_labels_dict will not be added and any mapped-out class labels
will not be omitted. Typically, it should be set to True when
classes_list is a pre-defined list during data preparation, and
always during performance assessments.


	assessment_mode – (bool; default: False) Set to True when invoked
during performance assessments.









See also

koogu.data.preprocess.from_selection_table_map()
koogu.data.preprocess.from_top_level_dirs()
koogu.utils.assessments.BaseMetric()




	
property classes_list

	The final list of class names in the problem space, after performing
manipulations based on remap_labels_dict (if specified).






	
property labels_to_indices

	A Python dictionary mapping class names (string) to zero-based indices.






	
property negative_class_index

	Index (zero-based) of the negative class (if specified) in
classes_list.










	
class koogu.utils.detections.SelectionTableReader(seltab_file, fields_spec, delimiter='\t')

	A generator for reading Raven selection tables. A simple, fast yet efficient
way for processing selection tables. Pass in the path to the file and a list
containing field specifications, and retrieve table entries iteratively,
without having to load the entire selection table file in memory.


	Parameters:

	
	seltab_file – Path to a Raven selection table file.


	fields_spec – A list of field specifiers. A field specifier must be a
tuple containing -


	the name of the field (column header),


	the corresponding data type, and


	optionally, a default value.




The field names (case-sensitive) should match the actual column headers
in the selection table file. If no matching column header is found for a
specified field, then the respective value will be None in every
returned output. If an annotation entry is blank for a specified field,
then the respective value returned will be set to either the default (if
specified) or to None.




	delimiter – (optional; default is the tab character) The delimiter in
the selection table file.






	Returns:

	The generator iteratively yields tuples containing type-converted
values corresponding to the chosen fields from each annotation read. The
fields in the tuple will be in the same order as that of
fields_spec.





Example:

>>> fields_spec = [('Selection', int, 0),
...                ('Begin Time (s)', float, 0),
...                ('Tags', str),
...                ('Score', float)]
...
>>> for entry in SelectionTableReader('my_annots.selection.txt',
...                                   fields_spec):
...     print(entry[0], entry[1], entry[2], entry[3])










	
koogu.utils.detections.assess_annotations_and_clips_match(clip_offsets, clip_len, num_classes, annots_times, annots_class_idxs, min_annot_overlap_fraction=1.0, keep_only_centralized_annots=False, negative_class_idx=None, max_nonmatch_overlap_fraction=0.0)

	Match clips to annotations and return “coverage scores” and a mask of
‘matched annotations’. Coverage score is a value between 0.0 and 1.0 and
describes how much of a particular class’ annotation(s) is/are covered by
each clip.


	Parameters:

	
	clip_offsets – M-length array of start samples (offset from the start
of the audio file) of M clips.


	clip_len – Number of waveform samples in each clip.


	num_classes – Number of classes in the given application.


	annots_times – A numpy array (shape Nx2) of start-end pairs defining
annotations’ temporal extents, in terms of sample indices.


	annots_class_idxs – An N-length list of zero-based indices to the
class corresponding to each annotation.


	min_annot_overlap_fraction – Lower threshold on how much coverage
a clip must have with an annotation for the annotation to be considered
“matched”.


	keep_only_centralized_annots – If enabled (default: False), very short
annotations (< half of clip_len) will generate full coverage (1.0)
only if they occur within the central 50% extents of the clip or if the
annotation cuts across the center of the clip. For short annotations
that do not satisfy these conditions, their normally-computed coverage
value will be scaled down based on the annotation’s distance from the
center of the clip.


	negative_class_idx – If not None, clips that do have no (or small)
overlap with any annotation will be marked as clips of the non-target
class whose index this parameter specifies. See
max_non_match_overlap_fraction for further control.


	max_nonmatch_overlap_fraction – A clip without enough overlap with
any annotations will be marked as non-target class only if its
overlap with any annotation is less than this amount (default 0.0). This
parameter is only used when negative_class_idx is set.






	Returns:

	A 2-element tuple containing -


	MxP “coverage” matrix corresponding to the M clips and P classes. The
values in the matrix will be:


1.0   - if either the m-th clip fully contained an annotation from the


p-th class or vice versa (possible when annotation is longer

than clip_len);



<1.0  - if there was partial coverage (the number of overlapping


samples is divided by the shorter of clip_len or

annotation length);



0.0   - if the m-th clip had no overlap with any annotations from the


p-th class.







	N-length boolean mask of annotations that were matched with at least
one clip under the condition of min_annot_overlap_fraction.















	
koogu.utils.detections.assess_annotations_and_detections_match(num_classes, gt_times, gt_labels, det_times, det_labels, min_gt_coverage=0.5, min_det_usage=0.5)

	Match elements describing time-spans from two collections. Typically, one
collection corresponds to ground-truth (gt) temporal extents and the other
collection corresponds to detection (det) temporal extents.


	Parameters:

	
	num_classes – Number of classes of the various time-events.


	gt_times – Mx2 numpy array representing the start-end times of M
ground-truth events.


	gt_labels – M-length integer array indicating the class of each of
the M ground-truth events.


	det_times – Nx2 numpy array representing the start-end times of N
detection events.


	det_labels – N-length integer array indicating the class of each of
the N detection events.


	min_gt_coverage – A floating point value (in the range 0-1)
indicating the minimum fraction of a ground-truth event that must be
covered by one or more detections for it to be considered “recalled”.


	min_det_usage – A floating point value (in the range 0-1)
indicating the minimum fraction of a detection event that must have
covered parts of one or more ground-truth events for it to be
considered a “true positive”.






	Returns:

	A 5-element tuple containing -


	per-class counts of true positives


	per-class counts of detections (true + false positives)


	numerator for computing recall (not that given our definition of
‘true positive’ and ‘recall’, this value may not the same as the
per-class counts of true positives).


	mask of ground-truth events that were “recalled”


	mask of detections that were true positives















	
koogu.utils.detections.postprocess_detections(clip_scores, clip_offsets, clip_length, threshold=None, suppress_nonmax=False, squeeze_min_samps=None)

	Post-process detections to group together successive detections from each
class.


	Parameters:

	
	clip_scores – An [N x M] array containing M per-class scores for each
of the N clips.


	clip_offsets – An N-length integer array containing indices of the
first sample in each clip.


	clip_length – Number of waveform samples in each clip.


	threshold – (default: None) If not None, scores below this value will
be ignored.


	suppress_nonmax – (bool; default: False) If True, will apply
non-max suppression to only consider the top-scoring class for each
clip.


	squeeze_min_samps – (default: None) If not None, will run the
algorithm to squish contiguous detections of the same class. Squeezing
will be limited to produce detections that are at least this many
samples long.






	Returns:

	A 3-element or 4-element tuple containing -


	sample indices (array of start and end pairs),


	aggregated scores,


	class IDs, and


	if requested, start-end indices making up each combined streak.

















            

          

      

      

    

  

    
      
          
            
  
Performance assessment


	
class koogu.utils.assessments.PrecisionRecall(audio_annot_list, raw_results_root, annots_root, thresholds=None, post_process_detections=False, **kwargs)

	Bases: BaseMetric

Class for assessing precision-recall values.


	Parameters:

	
	audio_annot_list – A list containing pairs (tuples or sub-lists) of
relative paths to audio files and the corresponding annotation
(Raven selection table) files.


	raw_results_root – The full paths of the raw result container files
whose filenames will be derived from the audio files listed in
audio_annot_list will be resolved using this as base directory.


	annots_root – The full paths of annotations files listed in
audio_annot_list will be resolved using this as base directory.


	thresholds – If not None, must be either a scalar quantity or a list
of non-decreasing values (float values in the range 0-1) at which
precision and recall value(s) will be assessed. If None, will default
to the range 0-1 with an interval of 0.05.


	post_process_detections – If True (default: False), a post-processing
algorithm will be applied to the raw detections before computing
performance stats.








Optional parameters


	Parameters:

	
	suppress_nonmax – If True (default: False), only the top-scoring class
per clip will be considered. When post-processing is enabled, the
parameter is handled directly in
koogu.utils.detections.postprocess_detections().


	squeeze_min_dur – (default: None). If set (duration in seconds), an
algorithm “to squeeze together” temporally overlapping regions from
successive raw clips will be applied. The ‘squeezing’ will be restricted
to produce detections that are at least as long as the specified value.
The value must be smaller than the duration of the model inputs.
Parameter used only when post-processing is enabled, and converts the
duration to number of samples before passing it to
koogu.utils.detections.postprocess_detections().








Parameters specific to



	(when post-processing isn’t enabled)

koogu.utils.detections.assess_annotations_and_clips_match()



	(when post-processing is enabled)

koogu.utils.detections.postprocess_detections(), and
koogu.utils.detections.assess_annotations_and_detections_match()








can also be specified, and will be passed as-is to the respective
functions.

All other kwargs parameters (if any) will be passed as-is to the base
class.

When calling assess(), passing return_counts=True will
return the per-class counts for the numerators and denominators of precision
and recall. Otherwise, per-class and overall precision-recall values will be
returned.


	
assess(show_progress=False, **kwargs)

	Perform the desired assessments.


	Parameters:

	show_progress – (default: False) If True, will show progress bars
during processing of each audio file.














	
class koogu.utils.assessments.BaseMetric(audio_annot_list, raw_results_root, annots_root, reject_classes=None, remap_labels_dict=None, negative_class_label=None, **kwargs)

	Base class for implementing performance assessment logic.


	Parameters:

	
	audio_annot_list – A list containing pairs (tuples or sub-lists) of
relative paths to audio files and the corresponding annotation
(selection table) files.


	raw_results_root – The full paths of the raw result container files
whose filenames will be derived from the audio files listed in
audio_annot_list will be resolved using this as base directory.


	annots_root – The full paths of annotations files listed in
audio_annot_list will be resolved using this as base directory.


	reject_classes – Name (case sensitive) of the class (like ‘Noise’ or
‘Other’) for which performance assessments are not to be computed. Can
specify multiple classes for rejection, as a list.


	remap_labels_dict – If not None, must be a Python dictionary
describing mapping of class labels. For details, see similarly named
parameter to the constructor of
koogu.utils.detections.LabelHelper.


	negative_class_label – A string (e.g. ‘Other’, ‘Noise’) which will be
used as a label to identify the negative class clips (those that did
not match any annotations), if an inherited class deals with those. If
specified, will be used in conjunction with remap_labels_dict.









	
assess(show_progress=False, **kwargs)

	Perform the desired assessments.


	Parameters:

	show_progress – (default: False) If True, will show progress bars
during processing of each audio file.
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      	validation_samples (koogu.data.feeder.BaseFeeder property)


  

  	
      	validation_samples_per_class (koogu.data.feeder.BaseFeeder property)


  







            

          

      

      

    

  

    
      
          
            
  
Repurposing annotations *

blah bleh




            

          

      

      

    

  

    
      
          
            
  
Transfer learning

Bioacoustics researchers often tend to employ transfer learning approaches, using models that were pre-trained on other data (e.g., images). Such approaches are sometimes useful when training datasets are small. Using transfer learning in a Koogu workflow simply involves ‘plugging in’ a pre-trained model in an implementation of the abstract class koogu.model.architectures.BaseArchitecture.

The below example implements BaseArchitecture, by defining build_network() to incorporate a publicly available pre-trained MobileNetV2 whose weights were trained using the large ImageNet dataset. You may choose to use a different pre-trained model from here [https://www.tensorflow.org/api_docs/python/tf/keras/applications] or from other sources.  Often, these pre-trained models have specific expectations with respect to input shapes, types, etc.

Assuming a data pipeline similar to the example in Quick-start guide (which uses SpectralDataFeeder), the 1-channel spectrograms generated by the feeder must be converted to a 3-channel RGB image using a suitable colorscale (and resized) before they become inputs to the pre-trained model. We use Spec2Img for this purpose. The pre-trained model will be used as a “feature extractor”, and a classification layer will be added. The “training” of the full model will only update weights of the added classification layer.

import tensorflow as tf
from koogu.data.tf_transformations import Spec2Img
from koogu.model.architectures import BaseArchitecture
from matplotlib import colormaps


class MyTransferModel(BaseArchitecture):

    def build_network(self, input_tensor, is_training, **kwargs):

        # Many of the available pre-trained models expect inputs to be of a
        # particular size. The `input_tensor` may not already be in that shape,
        # depending on the chosen data preparation parameters (e.g., with
        # koogu.data.feeder.SpectralDataFeeder). We need to resize the images to
        # match the input shape of the pre-trained model.
        # MobileNetV2 defaults to an input size of 224x224, and also supports a
        # few other sizes. 160x160 is a supported size, and we use that in this
        # example.
        target_img_size = (160, 160)

        # Choose your favourite colorscale from matplotlib or other sources.
        my_cmap = colormaps['jet'](range(256))
        # `my_cmap` will be a 256 element array of RGB color values from the
        # "Jet" colorscale.

        # First, need to convert input spectrograms to equivalent RGB images.
        # Spec2Img will convert 1-channel spectrograms to 3-channel RGB images
        # (with values in the range [0.0, 1.0]) and resize them as desired.
        to_image = Spec2Img(my_cmap, img_size=target_img_size)

        # The pre-trained MobileNetV2 expects RGB values to be scaled to the
        # range [-1.0, 1.0].
        rescale = tf.keras.layers.Rescaling(2.0, offset=-1.0)
        # NOTE: `Rescaling` was added in TensorFlow v2.6.0. If you use an older
        #       version, you can implement this operation by simply multiplying
        #       the output of to_image() by 2.0 and then subtracting 1.0.

        # Load the pre-trained MobileNetV2 model with ImageNet weights, and
        # without the trailing fully-connected layer.
        pretrained_cnn = tf.keras.applications.MobileNetV2(
            input_shape=target_img_size + (3, ),    # Include RGB dimension
            include_top=False,
            weights='imagenet')
        pretrained_cnn.trainable = False            # Freeze CNN weights

        # Pooling layer
        global_average_layer = tf.keras.layers.GlobalAveragePooling2D()

        # Put them all together now.
        # NOTE: The "training=False" parameter to `pretrained_cnn` is required
        #       to ensure that BatchNorm layers in the model operate in
        #       inference mode (for more details, see TensorFlow's webpage on
        #       transfer learning).
        output = to_image(input_tensor)
        output = rescale(output)
        output = pretrained_cnn(output, training=False)
        output = global_average_layer(output)

        # NOTE: Do not add the classification layer. It will be added by Koogu's
        #       internal code.

        return output





With an architecture defined this way, you can simply replace the following code block in step 2 of the Quick-start guide

71model = architectures.DenseNet(
72    [4, 4, 4],                                 # 3 dense-blocks, 4 layers each
73    preproc=[ ('Conv2D', {'filters': 16}) ],   # Add a 16-filter pre-conv layer
74    dense_layers=[32]                          # End with a 32-node dense layer
75)





… with this -

model = MyTransferModel()





That’s it! The remainder of the Koogu workflow described in the Quick-start guide will now employ transfer learning.




            

          

      

      

    

  

    
      
          
            
  
Assessment metrics


	
class koogu.utils.assessments.PrecisionRecall(audio_annot_list, raw_results_root, annots_root, annotation_reader=None, thresholds=None, post_process_detections=False, **kwargs)

	Bases: BaseMetric

Class for assessing precision-recall values.


	Parameters:

	
	audio_annot_list – A list containing pairs (tuples or sub-lists) of
relative paths to audio files and the corresponding annotation files.
Alternatively, you could also specify (path to) a 2-column csv file
containing these pairs of entries (in the same order). Only use the csv
option if the paths are simple (i.e., the filenames do not contain
commas or other special characters).


	raw_results_root – The full paths of the raw result container files
whose filenames will be derived from the audio files listed in
audio_annot_list will be resolved using this as base directory.


	annots_root – The full paths of annotations files listed in
audio_annot_list will be resolved using this as base directory.


	annotation_reader – If not None, must be an annotation reader instance
from annotations. Defaults to Raven
Reader.


	thresholds – If not None, must be either a scalar quantity or a list
of non-decreasing values (float values in the range 0-1) at which
precision and recall value(s) will be assessed. If None, will default
to the range 0-1 with an interval of 0.05.


	post_process_detections – If True (default: False), a post-processing
algorithm will be applied to the raw detections before computing
performance stats.








Optional parameters


	Parameters:

	
	suppress_nonmax – If True (default: False), only the top-scoring class
per clip will be considered.


	squeeze_min_dur – (default: None). If set (duration in seconds), an
algorithm “to squeeze together” temporally overlapping regions from
successive raw clips will be applied. The ‘squeezing’ will be restricted
to produce detections that are at least as long as the specified value.
The value must be smaller than the duration of the model inputs.
Parameter used only when post-processing is enabled.








Parameters specific to



	(when post-processing isn’t enabled)

koogu.utils.detections.assess_annotations_and_clips_match()



	(when post-processing is enabled)

koogu.utils.detections.assess_annotations_and_detections_match()








can also be specified, and will be passed as-is to the respective
functions.

All other kwargs parameters (if any) will be passed as-is to the base
class.

When calling assess(), passing return_counts=True will
return the per-class counts for the numerators and denominators of precision
and recall. Otherwise, per-class and overall precision-recall values will be
returned.


See also

koogu.data.annotations




	
assess(**kwargs)

	Perform the desired assessments.












            

          

      

      

    

  

    
      
          
            
  
Extensibles


Annotations


	
class koogu.data.annotations.BaseAnnotationReader(fetch_frequencies=False)

	Base class for reading annotations from storage.

Within Koogu, the method __call__() (and others in chain) will be
invoked from parallel threads of execution. Exercise caution if an
implementation of this class needs to use and alter any member variables.


	Parameters:

	fetch_frequencies – (boolean; default: False) If True, will also
attempt to read annotations’ frequency bounds. NaNs will be returned
for any missing values. If False, the respective item in the tuple
returned from __call__() will be set to None.






	
__call__(source, **kwargs)

	Read annotations from file/database/etc., process as appropriate and
return a 5-element tuple (see below).


	Parameters:

	source – Identifier of an annotation source (e.g., path to an
annotation file).



	Returns:

	A 5-element tuple


	N-length list of 2-element tuples denoting annotations’ start and
end times


	Either None or an N-length list of 2-element tuples denoting
annotations’ frequency bounds


	N-length list of tags/class labels


	N-length list of channel indices (0-based)


	(optional; set to None if not returning) N-length list of audio
sources corresponding to the returned annotations















	
abstract _fetch(source, **kwargs)

	Read annotations from file/database/etc., process as appropriate and
return a 5-element tuple (see below).


	Parameters:

	source – Identifier of an annotation source (e.g., path to an
annotation file).






	Implementations must return a 5-element tuple -
	
	N-length list of 2-element tuples denoting annotations’ start and
end times


	None if load_frequencies=False, otherwise an N-length list of
2-element tuples denoting annotations’ frequency bounds


	N-length list of tags/class labels


	N-length list of channel indices (0-based)


	(optional; set to None if not returning) N-length list of audio
sources corresponding to the returned annotations

















	
class koogu.data.annotations.BaseAnnotationWriter(write_frequencies=False)

	Base class for writing annotations/detections to storage.

Within Koogu, the method __call__() (and others in chain) will be
invoked from parallel threads of execution. Exercise caution if an
implementation of this class needs to use and alter any member variables.


	Parameters:

	write_frequencies – (boolean; default: False) If True, will also
write out annotations’ frequency bounds. Based on the implementation
appropriate defaults (blank spaces, NaNs, negative values, etc.)
will be written when missing frequency values. If False, frequency
values, even if provided, will not be written out, and relevant
structural constructs will not be created in the output file.






	
__call__(destination, times, labels, *args, **kwargs)

	Write out annotations/detections to destination.


	Parameters:

	
	destination – Identifier of the target where
annotations/detections will be written to (e.g., path to an
annotation file).


	times – An N-length list of 2-element list/tuple of start and end
times.


	labels – An N-length list of annotation/detection labels.


	frequencies – An N-length list of 2-element list/tuple of low and
high frequencies.






	Returns:

	Number of annotations/detections written.















Feeder


	
class koogu.data.feeder.BaseFeeder(data_shape, num_training_samples, num_validation_samples, class_names, **kwargs)

	Base class defining the interface for implementing feeder classes for
building data pipelines in Koogu.


	Parameters:

	
	data_shape – Shape of the input samples presented to the model.


	num_training_samples – List of per-class counts of training samples
available.


	num_validation_samples – List of per-class counts of validation
samples available.


	class_names – List of names (str) corresponding to the different
classes in the problem space.









	
get_shape_transformation_info()

	Override in inherited class if its transform() alters the shape of
the read/input data before a dataset is returned. If not None, must
return a tuple where:


	first value is the untransformed input shape,


	second is the actual transformation function.









	
abstract make_dataset(is_training, batch_size, **kwargs)

	This function must be implemented in the derived class.

It should contain logic to load training & validation data (usually
from stored files) and construct a TensorFlow Dataset.


	Parameters:

	
	is_training – (boolean) True if operating in training mode.


	batch_size – (integer) Number of input samples from the dataset to
combine in a single batch.






	Returns:

	A tf.data.Dataset










	
abstract post_transform(sample, label, is_training, **kwargs)

	Implement this method in the derived class to apply any
post-transformation augmentations to a single input to the model (during
training and validation).


	Parameters:

	
	sample – The transformed sample to which to apply augmentations.


	label – The class info pertaining to sample.


	is_training – (boolean) True if operating in training mode.


	kwargs – Any additional parameters.






	Returns:

	A 2-tuple containing transformed sample and label.










	
abstract pre_transform(sample, label, is_training, **kwargs)

	Implement this method in the derived class to apply any
pre-transformation augmentations to a single input to the model (during
training and validation).


	Parameters:

	
	sample – The untransformed sample to which to apply augmentations.


	label – The class info pertaining to sample.


	is_training – (boolean) True if operating in training mode.


	kwargs – Any additional parameters.






	Returns:

	A 2-tuple containing transformed sample and label.










	
abstract transform(sample, label, is_training, **kwargs)

	This function must be implemented in the derived class.

It should contain logic to apply any transformations to a single input
to the model (during training and validation).


	Parameters:

	
	sample – The sample that must be ‘transformed’ before
consumption by a model.


	label – The class info pertaining to sample.


	is_training – (boolean) True if operating in training mode.


	kwargs – Any additional parameters.






	Returns:

	A 2-tuple containing transformed sample and label.










	
property class_names

	List of names (str) of the classes in the application.






	
property data_shape

	The shape of an input sample.






	
property num_classes

	The number of classes in the application.






	
property training_samples

	List of per-class training samples available.






	
property training_samples_per_class

	List of per-class validation samples available.






	
property validation_samples

	Total number of training samples available.






	
property validation_samples_per_class

	Total number of validation samples available.










See also

The koogu.data.feeder.DataFeeder class is also extensible. See
Custom feeders for example pseudo-code.





Model architecture


	
class koogu.model.architectures.BaseArchitecture(multilabel=True, dtype=None, name=None)

	Base class for implementing custom user-defined architectures.


	Parameters:

	
	multilabel – (bool; default: True) Set appropriately so that the
loss function and accuracy metrics can be chosen correctly. A multilabel
model’s Logits (final) layer will have Sigmoid activation whereas a
single-label model’s will have SoftMax activation.


	dtype – Tensorflow data type of the model’s weights (default:
tf.float32).


	name – Name of the model.









	
abstract build_network(input_tensor, is_training, **kwargs)

	This method must be implemented in the derived class.

It should contain logic to construct the desired sequential or
functional model network starting from the input_tensor.


Note

Do not add the Logits layer in your implementation. It will be
added by internal code.




	Parameters:

	
	input_tensor – The Keras tensor to use as the input placeholder
in model that will be built.


	is_training – (boolean) Indicates if operating in training mode.
Certain elements of the network (e.g., dropout layers) may be
excluded when not in training mode.






	Returns:

	Must return a Keras tensor corresponding to outputs of the
architecture.














See also

Implementing Transfer learning models.





Assessment metric


	
class koogu.utils.assessments.BaseMetric(audio_annot_list, raw_results_root, annots_root, annotation_reader=None, reject_classes=None, remap_labels_dict=None, negative_class_label=None, **kwargs)

	Base class for implementing performance assessment logic.


	Parameters:

	
	audio_annot_list – A list containing pairs (tuples or sub-lists) of
relative paths to audio files and the corresponding annotation files.
Alternatively, you could also specify (path to) a 2-column csv file
containing these pairs of entries (in the same order). Only use the csv
option if the paths are simple (i.e., the filenames do not contain
commas or other special characters).


	raw_results_root – The full paths of the raw result container files
whose filenames will be derived from the audio files listed in
audio_annot_list will be resolved using this as base directory.


	annots_root – The full paths of annotations files listed in
audio_annot_list will be resolved using this as base directory.


	annotation_reader – If not None, must be an annotation reader instance
from annotations. Defaults to Raven
Reader.


	reject_classes – Name (case sensitive) of the class (like ‘Noise’ or
‘Other’) for which performance assessments are not to be computed. Can
specify multiple classes for rejection, as a list.


	remap_labels_dict – If not None, must be a Python dictionary
describing mapping of class labels. For details, see similarly named
parameter to the constructor of
koogu.utils.detections.LabelHelper.


	negative_class_label – A string (e.g. ‘Other’, ‘Noise’) which will be
used as a label to identify the negative class clips (those that did
not match any annotations), if an inherited class deals with those. If
specified, will be used in conjunction with remap_labels_dict.









	
assess(**kwargs)

	Perform the desired assessments.













            

          

      

      

    

  

    
      
          
            
  
Prepare training inputs

Prepared data (clips + associated label/class information) are written to the
filesystem for later consumption during model training. In addition to extracting
clips from raw audio, the below interfaces also support the following audio
pre-processing operations -


	standardizing the sampling frequencies of all recordings,


	application of low-pass, high-pass or band-pass filters, and


	waveform normalization.




The parameters for data preparation are specified using a Python dictionary object that is passed as a parameter (named audio_settings) to the below functions. The following keys are supported:



	desired_fs (required) The target sampling frequency (in Hz). Audio files having other sampling frequencies will be resampled to this value. Note that upsampling from a lower sampling rate introduces frequency banding in the resulting audio.


	clip_length (required) The duration of each audio segment (in seconds).


	clip_advance (required) The amount (in seconds) of overlap between successive segments is controlled by this. If clip_advance equals clip_length, then the overlap between successive segments will be zero.


	filterspec (optional) If specified, must be a 3-element ordered list/tuple specifying -


	filter order (integer)


	cutoff frequency(ies) (a 1-element or 2-element list/tuple)


	filter type (string; one of ‘lowpass’, ‘highpass’ or ‘bandpass’)




If filter type is ‘bandpass’, the the cutoff frequency must be a 2-element list/tuple.



	normalize_clips (optional; default: True) If True, will scale the waveform within each resulting clip to be in the range [-1.0, 1.0].








	
koogu.prepare.from_selection_table_map(audio_settings, audio_seltab_list, audio_root, seltab_root, output_root, annotation_reader=None, desired_labels=None, remap_labels_dict=None, negative_class_label=None, **kwargs)

	Pre-process training data using info contained in audio_seltab_list.


	Parameters:

	
	audio_settings – A dictionary specifying the parameters for processing
audio from files.


	audio_seltab_list – A list containing pairs (tuples or sub-lists) of
relative paths to audio files and the corresponding annotation
(selection table) files. Alternatively, you could also specify (path to)
a 2-column csv file containing these pairs of entries (in the same
order). Only use the csv option if the paths are simple (i.e., the
filenames do not contain commas or other special characters).


	audio_root – The full paths of audio files listed in
audio_seltab_list are resolved using this as the base directory.


	seltab_root – The full paths of annotations files listed in
audio_seltab_list are resolved using this as the base directory.


	output_root – “Prepared” data will be written to this directory.


	annotation_reader – If not None, must be an annotation reader instance
from annotations. Defaults to Raven
Reader.


	desired_labels – The target set of class labels. If not None, must be
a list of class labels. Any selections (read from the selection tables)
having labels that are not in this list will be discarded. This list
will be used to populate classes_list.json that will define the classes
for the project. If None, then the list of classes will be populated
with the annotation labels read from all selection tables.


	remap_labels_dict – If not None, must be a Python dictionary
describing mapping of class labels. For details, see similarly named
parameter to the constructor of
koogu.utils.detections.LabelHelper.


Note

If desired_labels is not None, mappings for which targets
are not listed in desired_labels will be ignored.






	negative_class_label – A string (e.g. ‘Other’, ‘Noise’) which will be
used as a label to identify the negative class clips (those that did not
match any annotations). If None (default), saving of negative class
clips will be disabled.








Other parameters specific to
koogu.utils.detections.assess_annotations_and_clips_match()
can also be specified, and will be passed as-is to the function.


	Returns:

	A dictionary whose keys are annotation tags (either discovered from
the set of annotations, or same as desired_labels if not None) and
the values are the number of clips produced for the corresponding class.






See also

koogu.data.annotations








	
koogu.prepare.from_top_level_dirs(audio_settings, class_dirs, audio_root, output_root, remap_labels_dict=None, **kwargs)

	Pre-process training data available as audio files in class_dirs.


	Parameters:

	
	audio_settings – A dictionary specifying the parameters for processing
audio from files.


	class_dirs – A list containing relative paths to class-specific
directories containing audio files. Each directory’s contents will be
recursively searched for audio files.


	audio_root – The full paths of the class-specific directories listed
in class_dirs are resolved using this as the base directory.


	output_root – “Prepared” data will be written to this directory.


	remap_labels_dict – If not None, must be a Python dictionary
describing mapping of class labels. For details, see similarly named
parameter to the constructor of
koogu.utils.detections.LabelHelper.


	filetypes – (optional) Restrict listing to files matching extensions
specified in this parameter. Has defaults if unspecified.






	Returns:

	A dictionary whose keys are annotation tags (discovered from the
set of annotations) and the values are the number of clips produced for
the corresponding class.
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Handling Annotations/Detections

Readers and Writers for managing annotations and detections.


Readers

Format-specific readers for reading and processing annotations.


	
class koogu.data.annotations.Audacity.Reader(fetch_frequencies=False)

	Reader class for reading Audacity format annotation files.


	Parameters:

	fetch_frequencies – (boolean; default: False) If True, will also
attempt to read annotations’ frequency bounds. NaNs will be returned
for any missing values. If False, the respective item in the tuple
returned will be set to None.










	
class koogu.data.annotations.Raven.Reader(fetch_frequencies=False, label_column_name=None, **kwargs)

	Reader class for reading Raven selection table format files.


	Parameters:

	
	fetch_frequencies – (boolean; default: False) If True, will also
return annotations’ frequency bounds. NaNs will be returned for any
missing values in file. If False, the respective return value will be
set to None.


	label_column_name – A string (e.g., “Tags”) identifying the header
of the column in the selection table file(s) from which class labels are
to be extracted. If None (default), will look for a column with the
header “Tags”.









	
classmethod get_annotations_from_file(seltab_file, fields_spec, delimiter='\t')

	A generator for reading Raven selection tables. A simple, fast yet
efficient way for processing selection tables. Pass in the path to the
file and a list containing field specifications, and retrieve table
entries iteratively, without having to load the entire selection table
file into memory.


	Parameters:

	
	seltab_file – Path to a Raven selection table file.


	fields_spec – A list of field specifiers. A field specifier must
be a tuple containing -


	the name of the field (column header),


	the corresponding data type, and


	optionally, a default value.




The field names (case-sensitive) should match the actual column
headers in the selection table file. If no matching column header is
found for aspecified field, then the respective value will be None
in every returned output. If an annotation entry is blank for a
specified field, then the respective value returned will be set to
either the default (if specified) or to None.




	delimiter – (optional; default is the tab character) The delimiter
in the selection table file.






	Returns:

	The generator iteratively yields tuples containing
type-converted values corresponding to the chosen fields from each
annotation read. The fields in the tuple will be in the same order
as that of fields_spec.





Example:

>>> file_fields_spec = [('Selection', int, 0),
...                     ('Begin Time (s)', float, 0),
...                     ('Tags', str),
...                     ('Score', float)]
...
>>> for entry in Reader.get_annotations_from_file(
...         'my_annots.selection.txt', file_fields_spec):
...     print(entry[0], entry[1], entry[2], entry[3])














	
class koogu.data.annotations.SonicVisualiser.Reader(fetch_frequencies=False)

	Reader class for reading Sonic Visualiser format annotation files.


	Parameters:

	fetch_frequencies – (boolean; default: False) If True, will also
attempt to read annotations’ frequency bounds. NaNs will be returned
for any missing values. If False, the respective item in the tuple
returned will be set to None.











Writers

Format-specific writers for saving annotations and detections.


	
class koogu.data.annotations.Audacity.Writer(write_frequencies=False, **kwargs)

	Writer class for writing annotations/detections to Audacity format files.


	Parameters:

	write_frequencies – Boolean (default: False) directing whether to
include bounding (lower and higher) frequency info in the outputs.










	
class koogu.data.annotations.Raven.Writer(write_frequencies=False, extra_fields_spec=None, **kwargs)

	Writer class for writing annotations/detections to Raven selection table
format files.


	Parameters:

	
	write_frequencies – Boolean (default: False) directing whether to
include the “Low Freq (Hz)” and “High Freq (Hz)” fields in the outputs.


	extra_fields_spec – Optional list of 2-element tuples identifying any
additional fields to add to the output and their respective formats.
E.g., [(‘Model used’, ‘s’)] will add an extra field named “Model used”
and set the values in the fields to be formatted as strings.


	add_selection_number – Boolean (default: True) directing whether to
include the “Selection” field.


	add_channel – Boolean (default: True) directing whether to include the
“Channel” field.


	add_score – Boolean (default: False) directing whether to include the
“Scores” field. Use when saving detections.
















            

          

      

      

    

  

    
      
          
            
  
Annotations and Detections


	
class koogu.utils.detections.LabelHelper(classes_list, remap_labels_dict=None, negative_class_label=None, fixed_labels=True, assessment_mode=False)

	Provides functionality for manipulating and managing class labels in a
problem space, without resorting to altering original annotation files.


	Parameters:

	
	classes_list – List of class labels. When used during data
preparation, the list may be generated from available classes or
be provided as a pre-defined list. When used during performance
assessments, it is typically populated from the classes_list.json
file that is saved alongside raw detections.


	remap_labels_dict – (default: None) If not None, must be a dictionary
describing mapping of class labels. Use this to


	
update existing class’ labels


(e.g. {'c1': 'new_c1'}),







	
merge together existing classes


(e.g. {'c4': 'c1'}), or







	
combine existing classes into new ones


(e.g. {'c4': 'new_c2', 'c23', 'new_c2'}).









Avoid chaining of mappings (e.g. {'c1': 'c2', 'c2': 'c3'}).




	negative_class_label – (default: None) If not None, must be a string
(e.g. ‘Other’, ‘Noise’) which will be used as a label to identify the
negative class clips (those that did not match any annotations). If
specified, will be used in conjunction with remap_labels_dict.


	fixed_labels – (bool; default: True) When True, classes_list will
remain unchanged - any new mapping targets specified in
remap_labels_dict will not be added and any mapped-out class labels
will not be omitted. Typically, it should be set to True when
classes_list is a pre-defined list during data preparation, and
always during performance assessments.


	assessment_mode – (bool; default: False) Set to True when invoked
during performance assessments.









See also

koogu.prepare.from_selection_table_map()
koogu.prepare.from_top_level_dirs()
koogu.utils.assessments.BaseMetric()




	
property classes_list

	The final list of class names in the problem space, after performing
manipulations based on remap_labels_dict (if specified).






	
property labels_to_indices

	A Python dictionary mapping class names (string) to zero-based indices.






	
property negative_class_index

	Index (zero-based) of the negative class (if specified) in
classes_list.










	
koogu.utils.detections.assess_annotations_and_clips_match(clip_offsets, clip_len, num_classes, annots_times, annots_class_idxs, min_annot_overlap_fraction=1.0, keep_only_centralized_annots=False, negative_class_idx=None, max_nonmatch_overlap_fraction=0.0)

	Match clips to annotations and return “coverage scores” and a mask of
‘matched annotations’. Coverage score is a value between 0.0 and 1.0 and
describes how much of a particular class’ annotation(s) is/are covered by
each clip.


	Parameters:

	
	clip_offsets – M-length array of start samples (offset from the start
of the audio file) of M clips.


	clip_len – Number of waveform samples in each clip.


	num_classes – Number of classes in the given application.


	annots_times – A numpy array (shape Nx2) of start-end pairs defining
annotations’ temporal extents, in terms of sample indices.


	annots_class_idxs – An N-length list of zero-based indices to the
class corresponding to each annotation.


	min_annot_overlap_fraction – Lower threshold on how much coverage
a clip must have with an annotation for the annotation to be considered
“matched”.


	keep_only_centralized_annots – If enabled (default: False), very short
annotations (< half of clip_len) will generate full coverage (1.0)
only if they occur within the central 50% extents of the clip or if the
annotation cuts across the center of the clip. For short annotations
that do not satisfy these conditions, their normally-computed coverage
value will be scaled down based on the annotation’s distance from the
center of the clip.


	negative_class_idx – If not None, clips that do have no (or small)
overlap with any annotation will be marked as clips of the non-target
class whose index this parameter specifies. See
max_non_match_overlap_fraction for further control.


	max_nonmatch_overlap_fraction – A clip without enough overlap with
any annotations will be marked as non-target class only if its
overlap with any annotation is less than this amount (default 0.0). This
parameter is only used when negative_class_idx is set.






	Returns:

	A 2-element tuple containing -


	MxP “coverage” matrix corresponding to the M clips and P classes. The
values in the matrix will be:


1.0   - if either the m-th clip fully contained an annotation from the


p-th class or vice versa (possible when annotation is longer

than clip_len);



<1.0  - if there was partial coverage (the number of overlapping


samples is divided by the shorter of clip_len or

annotation length);



0.0   - if the m-th clip had no overlap with any annotations from the


p-th class.







	N-length boolean mask of annotations that were matched with at least
one clip under the condition of min_annot_overlap_fraction.















	
koogu.utils.detections.assess_annotations_and_detections_match(num_classes, gt_times, gt_labels, det_times, det_labels, min_gt_coverage=0.5, min_det_usage=0.5)

	Match elements describing time-spans from two collections. Typically, one
collection corresponds to ground-truth (gt) temporal extents and the other
collection corresponds to detection (det) temporal extents.


	Parameters:

	
	num_classes – Number of classes of the various time-events.


	gt_times – Mx2 numpy array representing the start-end times of M
ground-truth events.


	gt_labels – M-length integer array indicating the class of each of
the M ground-truth events.


	det_times – Nx2 numpy array representing the start-end times of N
detection events.


	det_labels – N-length integer array indicating the class of each of
the N detection events.


	min_gt_coverage – A floating point value (in the range 0-1)
indicating the minimum fraction of a ground-truth event that must be
covered by one or more detections for it to be considered “recalled”.


	min_det_usage – A floating point value (in the range 0-1)
indicating the minimum fraction of a detection event that must have
covered parts of one or more ground-truth events for it to be
considered a “true positive”.






	Returns:

	A 5-element tuple containing -


	per-class counts of true positives


	per-class counts of detections (true + false positives)


	numerator for computing recall (note that given our definition of
‘true positive’ and ‘recall’, this value may not be the same as the
per-class counts of true positives).


	mask of ground-truth events that were “recalled”


	mask of detections that were true positives















	
koogu.utils.detections.postprocess_detections(clip_scores, clip_offsets, clip_length, threshold=None, suppress_nonmax=False, squeeze_min_samps=None)

	Post-process detections to group together successive detections from each
class.


	Parameters:

	
	clip_scores – An [N x M] array containing M per-class scores for each
of the N clips.


	clip_offsets – An N-length integer array containing indices of the
first sample in each clip.


	clip_length – Number of waveform samples in each clip.


	threshold – (default: None) If not None, scores below this value will
be ignored.


	suppress_nonmax – (bool; default: False) If True, will apply
non-max suppression to only consider the top-scoring class for each
clip.


	squeeze_min_samps – (default: None) If not None, will run the
algorithm to squish contiguous detections of the same class. Squeezing
will be limited to produce detections that are at least this many
samples long.






	Returns:

	A 3-element or 4-element tuple containing -


	sample indices (array of start and end pairs),


	aggregated scores,


	class IDs, and


	if requested, start-end indices making up each combined streak.
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Low-level inferencing interface

Low-level interface for implementing custom analysis pipelines.
See an example psuedo-code.


	
class koogu.model.TrainedModel(saved_model_dir)

	An interface for using a trained model for making inferences.


	Parameters:

	saved_model_dir – Path to the directory from which to load a trained
model.






	
static finalize_and_save(classifier, output_dir, input_shape, transformation_info, classes_list, audio_settings, spec_settings=None)

	Create a new model encompassing an already-trained ‘classifier’.






	
infer(inputs)

	Process data using the trained model.


	Parameters:

	inputs – A 2D numpy array. The first dimension corresponds to the
number of input waveform clips. The second dimension contains clips’
samples.



	Returns:

	An NxM numpy array of scores corresponding to the N input
clips and M classes.










	
property audio_settings

	Audio settings that were used for preparing model inputs.






	
property class_names

	List of class names corresponding to the scores output by the model for
each input.






	
property spec_settings

	Spectrogram settings used for transforming waveforms into time-frequency
representations. If no transformation was applied (during training),
then this property will be None.










	
koogu.inference.analyze_clips(trained_model, clips, batch_size=1, audio_filepath=None)

	Apply a trained model to one or more audio clips and obtain scores.


	Parameters:

	
	trained_model – A koogu.model.TrainedModel instance.


	clips – An [N x ?] numpy array of N input waveforms.


	batch_size – (default: 1) Control how many clips are processed in a
single batch. Increasing this helps improve throughput, but requires
more RAM.


	audio_filepath – (default: None) If not None, will display a progress
bar.






	Returns:

	A 2-element tuple consisting of -


	detection/classification scores ([N x M] numpy array corresponding to
the N clips and M target classes), and


	the total time taken to process all the clips.
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